Прогнозирование процентных ставок на основе теории детерминированного хаоса как метод управления процентным риском в коммерческих банках тема диссертации по экономике, полный текст автореферата

Ученая степень
кандидата экономических наук
Автор
Галкин, Дмитрий Евгеньевич
Место защиты
Пермь
Год
2011
Шифр ВАК РФ
08.00.13

Автореферат диссертации по теме "Прогнозирование процентных ставок на основе теории детерминированного хаоса как метод управления процентным риском в коммерческих банках"

005013905

Галкин Дмитрий Евгеньевич

ПРОГНОЗИРОВАНИЕ ПРОЦЕНТНЫХ СТАВОК НА ОСНОВЕ

ТЕОРИИ ДЕТЕРМИНИРОВАННОГО ХАОСА КАК МЕТОД УПРАВЛЕНИЯ ПРОЦЕНТНЫМ РИСКОМ В КОММЕРЧЕСКИХ

БАНКАХ

Специальность 08.00.13 - математические и инструментальные методы экономики

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук

1 5 УА? 2072

Пермь 2012

005013905

Работа выполнена на кафедре прикладной математики ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет» (ПНИПУ)

Научный руководитель:

доктор технических наук, профессор

Первадчук Владимир Павлович

Официальные оппоненты:

доктор физико-математических наук, профессор

Румянцев Александр Николаевич

кандидат экономических наук, доцент

Ивлиев Сергей Владимирович

Ведущая организация:

ФГБОУ ВПО «Ижевский государственный технический университет», г. Ижевск

Защита состоится «29» марта 2012 года в 14 часов на заседании диссертационного совета ДМ 212.189.07 при ФГБОУ ВПО «Пермский государственный национальный исследовательский университет» по адресу: 614990, г. Пермь, ул. Букирева, 15, 1 корпус, зал заседаний Ученого совета.

С диссертацией можно ознакомиться в библиотеке Пермского государственного национального исследовательского университета. Автореферат размещен на официальном сайте ВАК Министерства образования и науки РФ: http://vak.ed.gov.ru/ и на сайте Пермского государственного национального исследовательского университета www.psu.ru

Автореферат разослан 28 февраля 2012 года.

Ученый секретарь диссертационного совета, доктор экономических наук, доцент

Т.В. Миролюбова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Задача управления рисками в банковском секторе является нетривиальной на всем протяжении ведения банковской деятельности. Проблема банковских рисков в современности приобретает все большую актуальность в свете увеличения влияния финансового сектора на мировую экономику. Так, к примеру, в США, в крупнейшей экономике мира, в 1970-х годах доля доходов финансового сектора в общем объеме доходов корпораций не превышала 16%, а в 2000-х достигла уже 41%. Принимая во внимание колоссальную роль банков в мировом финансовом кризисе 2008 года и набирающем обороты кризисе 2011 года, проблема управления и контроля за рисками в банковском секторе требует пристального внимания и изучения.

Среди всех видов риска, свойственных банковской деятельности, процентный риск занимает особое место, уступая лидирующие позиции по степени влияния лишь кредитному риску. Однако одним из существенных отличий процентного риска от кредитного является тот факт, что область, подверженная его влиянию, много шире. Вследствие этого, значимость процентного риска является высокой не для одного отдельного направления бизнеса, а для банка в целом.

Кроме этого, принимая во внимание высокую волатильность финансовых рынков, в том числе и рынка процентных ставок, в период экономической нестабильности, управление процентным риском должно осуществляться взвешенно, учитывая возможные варианты развития событий, влияющих на уровень процентного риска.

Упомянутые выше обстоятельства обуславливают актуальность исследования.

Степень научной разработанности темы. Изучением понятия процентного риска и исследованием различных аспектов проблем оценки и управления данным видом риска занимались такие ученые как Macaulay F., Redhead К., Hughes S., Entrop O., Cade E., Helliar С., Fabozzi F., Gardener E., Mishkin F., van Greuning H., Patnaik I., Madura J., Amadou N.

Современный уровень разработки данной проблемы в нашей стране отражены в работах отечественных ученых и специалистов, среди которых следует выделить Севрук В.Т., Ларионову И.В., Виниченко И.Н., Лаврушина О.И., Соколинскую Н.Э., Валенцеву Н.И., Хандруева A.A.

Одним из динамично развивающихся направлений в исследовании экономических объектов и систем является использование математических методов. Среди них отдельно следует отметить подходы, позволяющие широко использовать в исследовании концепции синергетики, детерминированного хаоса, фрактальной геометрии. Разработкой и развитием таких методов занимались следующие ученые: Takens F., Sornette D., Peters E., Bachelier L., Mandelbrot В., Gilmore R., Kantz H., Grassberger P., Procaccia I., Fama E., Lorenz E., Ruelle D., Casdagli M., Cao L., Haken H., Lefranc M. В российской науке значительный вклад в развитие этого направления внесли Курдюмов С.П., Малинецкий Г.Г., Безручко Б.П., Лоскутов А.Ю., Шумский С.А., Куперин Ю.А.

Целью диссертационного исследования является разработка теоретических и методологических основ для управления процентным риском в коммерческих банках на базе прогнозирования процентных ставок с помощью теории детерминированного хаоса.

Для достижения поставленной цели решены следующие задачи:

1. Исследование существующих подходов для прогнозирования финансовых временных рядов и оценки процентного риска с целью использования имеющегося опыта в разработке нового метода.

2. Выбор эффективного инструментария для исследования нелинейных динамических систем на основе порожденных временных рядов.

3. Исследование связи рынка процентных ставок и процентного риска в коммерческих банках.

4. Адаптация одномерной математической модели прогнозирования к рынку процентных ставок с учетом ограниченной детерминированности и предсказуемости.

5. Разработка многомерной математической модели прогнозирования процентных ставок.

6. Создание методики управления процентным риском на основе разработанных моделей прогнозирования.

Объектом исследования выступают коммерческие банки, подверженные процентному риску в результате осуществления операций с процентными продуктами.

Предметом исследования является методы и инструменты для управления процентным риском в коммерческих банках, а также методы и алгоритмы, обеспечивающие моделирование связанных с процентным риском систем.

Область исследования соответствует паспорту специальности ВАК РФ 08.00.13 «Математические и инструментальные методы экономики» по следующим пунктам:

1.1. Разработка и развитие математического аппарата анализа экономических систем: математической экономики, эконометрики, прикладной статистики, теории игр, оптимизации, теории принятия решений, дискретной математики и других методов, используемых в экономико-математическом моделировании.

1.6. Математический анализ и моделирование процессов в финансовом секторе экономики, развитие метода финансовой математики и актуарных расчетов.

2,3. Разработка систем поддержки принятия решений для рационализации организационных структур и оптимизации управления экономикой на всех уровнях.

Теоретической и методологической основой являются научные труды отечественных и зарубежных ученых в области оценки и управления процентным риском в банках, теории детерминированного хаоса, нелинейной динамики, математических методов и моделей финансовых рынков, фрактальной геометрии, синергетики, опубликованные в российской и зарубежной печати, а также в сети Интернет.

Практические расчеты в рамках настоящего исследования производились с использованием таких прикладных программных средств как MS Excel, MathWorks Matlab, Fractan, Tisean.

Информационную базу исследования составили:

- данные информационно-аналитических материалов по исследуемой проблеме, представленные в научной литературе, периодической печати и сети Интернет;

— статистические источники в виде котировок ставок межбанковского кредитования LIBOR и EURIBOR на различные сроки.

Наиболее существенными результатами, полученными лично автором, имеющими научную новизну и выносимыми на защиту, являются:

1. Установленная с помощью статистических методов нелинейность и детерминированность рынка процентных ставок LIBOR и EURIBOR.

2. Модифицированная математическая модель для прогнозирования процентных ставок на основе одномерного временного ряда, учитывающая детерминированность исследуемых

систем, а также разработанный подход для определения области применимости данной модели.

3. Математическая модель для прогнозирования процентных ставок на основе многомерного временного ряда, учитывающая детерминированность исследуемых систем и позволяющая использовать при построении прогноза динамику нескольких систем.

4. Методика управления процентным риском в коммерческих банках, в основе которой лежит математическая модель прогнозирования процентных ставок на базе методов теории детерминированного хаоса, позволяющая производить сценарное моделирование с помощью прогностических данных.

Теоретическая значимость результатов. Сформулированные в диссертационном исследовании положения и выводы развивают теоретико-методологическую базу анализа и прогнозирования рынка процентных ставок, а также методов управления процентным риском.

Практическая значимость результатов. Разработанный методологический подход предоставляет коммерческим банкам корректный инструмент, позволяющий в задаче управления процентным риском перейти от гипотетического сценарного моделирования к сценарному моделированию, основанному на более вероятных прогнозных данных.

Апробация результатов исследования. Основные положения диссертационной работы докладывались на научно-технической конференции студентов и молодых ученых ПГТУ (г. Пермь, 2007 г.), на XV Международной научно-технической конференции «Информационно-вычислительные технологии и их приложения (г.Пенза, 2011 г.), на XII Международной научно-технической конференции «Кибернетика и высокие технологии XXI века (г.Воронеж, 2011 г.), на семинаре Лаборатории конструктивных методов исследования динамических моделей ПГНИУ (г. Пермь, 2011 г.).

Результаты исследования нашли практическое применение в ЗАО ЮниКредит Банк. В работе данной организации используется методология управления процентным риском, а также применяется описанная в исследовании модель прогнозирования процентных ставок.

Также материалы, методы и результаты диссертации используются на кафедре Прикладной математики Пермского национального исследовательского политехнического университета при чтении курса «Математический анализ динамических моделей в экономике» по направлению подготовки 010500.68 «Прикладная

математика и информатика» в рамках магистерской программы «Математические методы в управлении экономическими процессами» и при чтении курса «Математический анализ динамических процессов в экономике» по направлению подготовки 080100.68 - «Экономика» в рамках магистерской программы «Математические методы анализа экономики».

Внедрение результатов исследования в указанных организациях подтверждено соответствующими документами.

Публикации. По теме диссертации автором опубликовано восемь работ общим объемом 3,72 п. л., в том числе две работы в изданиях, рекомендованных ВАК для публикации результатов диссертации (1,16 п. л.).

Объем и структура диссертационной работы. Работа изложена на 147 страницах машинописного текста. Основные результаты исследования проиллюстрированы в 26 таблицах и на 77 рисунках. Список использованной литературы составляет 108 наименований.

Структура диссертации обусловлена целью, задачами и логикой исследования. Работа состоит из введения, четырех глав, заключения, списка использованной литературы и приложений.

Во введении обосновывается актуальность темы, производится постановка цели и задач научного исследования, освещаются наиболее существенные достижения в области исследования, и приводится новизна полученных результатов.

В первой главе «Применение математических методов в исследовании финансовых временных рядов» рассматриваются существующие методы и подходы к прогнозированию финансовых временных рядов, дается оценка их эффективности, определяются предпосылки для использования нелинейных методов к моделированию финансовых временных рядов.

Во второй главе «Выбор и обоснование методов исследования нелинейных динамических систем на основе временных рядов» определяются основные подходы к изучению динамических систем с помощью теории детерминированного хаоса, производится критическая оценка и выявляются наиболее оптимальные и корректные инструменты для исследования систем на основе временных рядов.

В третьей главе «Оценка и исследование процентного риска в банковской деятельности» изучается роль процентного риска для коммерческих банков. Исследуется классификация процентного риска и основных факторов, порождающих процентный риск, с целью

выявить характер связи между рынком процентных ставок и процентным риском.

В четвертой главе «Разработка метода управления процентным риском на основе прогнозирования процентных ставок» производится исследование рынка процентных ставок на предмет нелинейности и детерминированности. Осуществляется адаптация модели прогнозирования на основе одномерного временного ряда к рынку процентных ставок; разрабатываются модели прогнозирования на основе многомерного временного ряда. На базе полученных моделей создается методика управления процентным риском в коммерческом банке.

В заключении содержатся основные результаты и выводы диссертационного исследования, оценка практического значения работы.

ОСНОВНЫЕ ПОЛОЖЕНИЯ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ

1. Установленная с помощью статистических методов нелинейность и детерминированность рынка процентных ставок LIBOR и EURIBOR.

Данное положение основано на исследовании процентных ставок LIBOR на срок 3 месяца и EURIBOR на срок 1, 3 и 6 месяцев, которые являются наиболее популярными справочными плавающими ставками и к которым привязывается ценообразование по кредитам с плавающей ставкой в долларах США и евро, Данные ставки отражают стоимость денежных средств на рынке межбанковского кредитования для первоклассных заемщиков с кредитным рейтингом АА и выше на соответствующий срок и в определенной валюте.

В диссертации была установлена качественная связь между рынком процентных ставок и уровнем процентного риска для коммерческих банков. В результате этого процентные ставки LIBOR и EURIBOR, как наиболее популярные при ценообразовании ставки на мировых финансовых рынках, были исследованы на предмет нелинейности и детерминированности.

Предварительно для получения квазистационарности исследуемые временные ряды были трансформированы на основе преобразования

У, = log(x,) - bg(x,_!) = log(—) ,t = 2ji (1)

Для исследования признаков нелинейности систем использовался BDS тест, предложенный Броком, Дехертом и Шенкманом, идея которого заключается в расчете статистики, основанной на разнице корреляционных интегралов (2) для размерностей вложения т и 1.

Сд,(/,Г)= 2 Y/,(*,",*?,/) (2)

'NV N ~Ч l<s

ГДе Х^ = (X,,XI+1,...,X,+N_1) И Xs = (^i^+lvi^j+.V-l) представляют собой исторические данные, TN = 71 - jV +1, а

f 1, при Lf -х^ II </, /,(*, ,Х?,1) = \ "и где III-супремум-норма.

О, при be, - xs > /

Полученная статистика (3) должна иметь нормальное распределение N(0,1), если исследуемый процесс является белым шумом.

oN{l,T)

В случае если значение статистики для различных значений / превышает критическое значение, то отвергается гипотеза о том, что процесс представляет собой белый шум.

BDS статистики были рассчитаны для каждого исследуемого процесса для различных значений I и размерностей вложения т. Полученные результаты позволили отвергнуть нулевую гипотезу для каждого процесса, т.е. отсчеты не являются независимыми и равномерно распределенными. Кроме этого, BDS статистики были рассчитаны для остатков авторегрессионной модели AR(1), по результатам чего нулевая гипотеза для каждого процесса была также отвергнута, что в свою очередь позволило сделать вывод о нелинейности исследуемых процессов.

Другим этапом в исследовании систем на предмет детерминированности был расчет показателя Херста для исследуемых систем с целью выявить насколько исследуемые объекты имеют долгосрочную память. Оценка производилась на основе расчета нормированного размаха временного ряда:

R/S = cNH (4)

где R = тах(х") - шіп(дг") - размах временного ряда, N - число наблюдений, Я - показатель Херста, S - среднеквадратическое отклонение ряда х".

На основе лог-лог графика зависимости нормированного размаха R/S от числа наблюдений N значение показателя Херста определяется как угол наклона аппроксимирующей прямой. Для исследуемых систем результаты расчета приведены в табл. 1 (3mLIBOR - ставки LIBOR на срок 3 месяца, lmEURIBOR - ставки EURIBOR на срок 1 месяц, 3mEURIBOR - ставки EURIBOR на срок 3 месяца, 6mEURIBOR - ставки EURIBOR на срок 6 месяцев):

Таблица 1

Значение показателей Херста для исследуемых систем_

Система 3mLIBOR lmEURIBOR 3mEURIBOR 6mEURIBOR

Я 0.7007 0.7493 0.7863 0.7791

Полученные результаты ( Н > 0.5) свидетельствуют о том, что исследуемые системы являются персистентными, т.е. имеют долгосрочную память и стремятся к сохранению тренда. На основе этого, а также результатов BDS теста для этих систем, можно сделать вывод о детерминированности исследуемых процессов.

2. Модифицированная математическая модель для прогнозирования процентных ставок на основе одномерного временного ряда, учитывающая детерминированность исследуемых систем, а также разработанный подход для определения области применимости данной модели.

При исследовании временного ряда процентных ставок, его можно рассматривать как реализацию более сложного процесса большей размерности. При этом можно осуществить реконструкцию аттрактора и, тем самым, исследовать сам порождающий временной ряд процесс.

Реконструкция аттрактора осуществляется с помощью метода задержки координат:

*(/) = (s(t),s(t + г),..-At + (т- 1Ю) (5)

где т - размерность вложения, причем т > 2d +1, d — размерность Минковского.

Проекция реконструированного аттрактора системы 3mLIBOR в пространство R2 представлена на рис. 1, где диагональные структуры являются подтверждением детерминированности системы.

---1-1-,-1-1_I_

-0.04 -0.03 -О 02 -0.01 0 0.01 0.02 О.ОЭ 0.04

Рис. 1. Реконструированный аттрактор 3mLIBOR

Рассмотрим дискретную динамическую детерминированную систему, динамика которой определяется как

= /(*,) (6) Пусть s(t) = h(x,) — временной ряд, который является реализацией динамической системы (6); применительно к объектам изучения временной ряд представляет собой трансформированный ряд значений процентных ставок. Можно отметить, что значение временного ряда, порожденного детерминированной системой, в определенный момент времени можно представить как

= о)) (7)

Данное представление справедливо для любой точки временного ряда s(t) в любой период времени, при этом единственным отличием будет количество воздействий системы / на начальное условие. Т.е. рассмотрев т подряд идущих значений временного ряда, можно их выразить как

+ 2) = /,(/(*,+1) = h(J(Mx,m = F2 (х,)

В результате можно все т значений временного ряда выразить

через значение х, с помощью набора функций F1.....Fm. Произведя

замену переменных zt+x ={s{t + l),i(i + 2),...,j(i + m)) и введя вектор-функцию Л, которая зависит от / и от/ (8) можно переписать как

*,+1=Л(*,) (9)

В соответствии с теоремой Такенса, если Л: Md -> Rm

диффеоморфно, то можно осуществить вложение Md в Rm без самопересечений. Т.к. Л имеет гладкую обратную функцию, равенство (9) можно записать в виде

X,=h~\z„x) (10)

Подставив (10) в s(t + m +1) = Fm+l(х,), получим, что s(t + т +1) = Fm+l(A~\zl+l) = ^(Л'1 (s(t + l),s(r + 2),..., s(t + и)))

= ®(j(/ +1), s(t + 2),..., sit + m)) (11)

Таким образом, следующее значение временного ряда определяется через т его предыдущих значений, где т имеет топологический смысл размерности вложения.

Ввиду того, что функция Ф не задана аналитически, ее аппроксимация производилась с помощью трехслойной нейронной сети, где количество нейронов на входном слое равно т, а на выходном слое - 1.

Для увеличения эффективности данной модели максимальный показатель Ляпунова Л, обуславливающий прогнозируемость системы, и показатель Херста Я, обуславливающий детерминированность системы, были рассмотрены как функции от времени. Для этого было использовано окно iv, длина которого выбиралась индивидуально для каждого исследуемого временного ряда, и с движением окна производилось вычисление указанных характеристик. На основании этого для применения модели была выделена область, где Л > 0 и Я > 0.5.

На рис. 2 представлен временной ряд процентной ставки 3mLIBOR совместно с максимальным показателем Ляпунова и показателем Херста как функции от времени, на основании чего была определена область применимости модели.

Итеративный прогноз следующего значения строился на основе предыдущих исторических данных.

Оригинальный временной рад

0.1 0.05 О

-0.05 -0.1

1000

2000 3000 4000 5000

Динамика максимального показателя Ляпунова

1000

2000 3000 4000 5000

Динамика показателя Херста

6000

6000

6000

7000

А

1 1 /

7000

і і і_--

О 1000 2000 3000 4000 5000

Рис.2. Идентификация области применимости модели для ЗтЫВСЖ

7000

Результаты прогнозирования следующего значения временного рада ЗтЫВСЖ представлены на рис. 3. Данный подход к прогнозированию на 25% времени был более эффективным чем метод, использующий в качестве прогнозного значения текущее значение (наиболее оптимальный метод прогнозирования для случайного блуждания).

Рис. 3. Оригинальный (сплошная линия) и прогнозный (пунктирная линия) временной ряд ЗтЫВСЖ

3. Математическая модель для прогнозирования процентных ставок на основе многомерного временного ряда, учитывающая детерминированность исследуемых систем и позволяющая использовать при построении прогноза динамику нескольких систем.

При наличии информации о процентных ставках в одной валюте на различные сроки можно рассмотреть данные временные ряды как реализации одного процесса, т.е. как проекции одного процесса на три оси координат. Однако в данном случае сложность заключается в корректном восстановлении аттрактора: каждый временной ряд обладает различными метрическими характеристиками. Для преодоления этой проблемы предусмотрено создание расширенного пространства вложения:

{•*/!>■*/>-!-, >хп-2-т1 >—>хп-(т,-1)-т, >

гп ~ Уп>Ул-тг>Ул-2т 7и-(т2_1)Г2> (12)

гп'2п-т1 >2и-2-г, '•••>2„_(И)-1).г, }

где г, - параметр задержки координат, определенный для /-той системы; т, - размерность вложения /'-той системы; хт у„, г„ - отчеты соответствующих временных рядов.

При рассмотрении аттрактора, вложенного в пространство размерности £) = тх + т2 + ш3, теорема Такенса будет также справедлива, т. к. соблюдение требований к минимальной размерности вложения будет заранее соблюдено «подвложениями», размерность которых изначально обеспечивала выполнение теоремы Такенса. В таком виде искусственно увеличенная размерность вложения за счет других временных рядов позволит учесть дополнительную информацию о системе, в т.ч. о временной структуре процентных ставок.

В этой математической модели для прогноза использована непараметрическая модель в форме ядерного сглаживания координат следующих точек для ¿-ближайших соседей точки траектории в восстановленном фазовом пространстве. Тогда прогнозная точка траектории будет иметь вид:

ли*.)

*/+!= Т,(Уы-Ук + 2>к^,,Ук) (13)

4=1

где N„{2,) - количество соседей для точки г,, а и'¿(г,,у*) -весовые коэффициенты.

Согласно формуле Надарая-Ватсона веса ^к(г„ук) можно определить как

1 1 <"2Ї>

где функция ядра Кк {х) = —К(—) = — е

п п

Вообще говоря, вид ядра в (13), а также ширина окна ядерной функции определяется экспериментальным путем. В данном случае ядерная функция - функция Гаусса, а ширина окна А = 0.5.

Согласно Кантцу X. и Шрайбергу Т., такой подход к моделированию хаотических временных рядов является достаточно устойчивым к зашумленным данным и эффективным для экспериментальных систем.

Кроме этого, данная модель является представителем класса смешанных моделей, т.е. определенным образом объединяет в себе черты локальных и глобальных моделей, что находит отражение в ее особенностях: с одной стороны она учитывает глобальное поведение и направленность системы, с другой - удачно моделирует локальную динамику.

На рис. 4 представлен долгосрочный прогноз процентной ставки 1тЕиШВ(Ж значений с 1703 по 1751 как результат применения данной математической модели к набору процентных ставок Е1Ж1ВСЖ на срок 1, 3 и 6 месяцев. В качестве исходных для прогноза данных выступали предыдущие значения.

0.03

Рис. 4. Оригинальный (сплошная линия) и прогнозный (пунктирная линия) временной ряд ІшЕШИВОЯ

Предложенная математическая модель прогнозирования осуществляет корректное прогнозирование с горизонтом прогноза не

более 15 значений, при этом прогнозирование может осуществляться для любой компоненты набора процентных ставок. Данный подход к прогнозированию временных рядов был сопоставлен с другими популярными методами прогнозирования: с моделями АММА, АИМА-вАЯСН и радиально-базисной нейронной сетью. На рис. 5 изображены результаты прогнозирования с использованием указанных моделей для определенного участка процентной ставки 1тЕиГШЮ11.

0.52 0.51 0.50 0.49 0.48 0.47

.....Оригинальный ряд

*" * "Модель на основе ТДХ

- » - АЫМА

-— АММА-ОАЯСН

- • - ВЛР-Сеть

1 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Рис. 5.1тЕ1ЛШ(Жи его прогнозные значения на основе различных моделей

В табл. 2 представлены результаты численного сравнения эффективности прогнозирования на основе нормированного среднеквадратического отклонения (НСКО)

НСКО =

і N

.реал

где д2 - дисперсия тестового множества и средней абсолютной погрешности (Д х):

1 ы I

(15)

(16)

Таблица 2

Модель на основе ТДХ ! АШМА-АИМА 1 САИСН ЯВР-сеть

НСКО 0.375 1.262 і 0.808 0.699

А, 0.006 0.021 і 0.013 0.011

Из представленного набора моделей и приведенной сводной таблицы эффективности результатов прогнозирования можно сделать вывод о том, что предлагаемая модель на основе теории детерминированного хаоса (ТДХ) является наиболее эффективной.

4. Методика управления процентным риском в коммерческих банках, в основе которой лежит математическая модель прогнозирования процентных ставок на базе методов теории детерминированного хаоса, позволяющая производить сценарное моделирование с помощью прогностических данных.

На основе предложенных математических моделей была разработана методика для управления процентным риском в коммерческом банке (рис. 6).

Рис. 6. Методика управления процентным риском

Так, первый этап заключается в анализе текущей позиции, подверженной процентному риску, с помощью гэп-анализа и оценки чувствительности доходности к изменению процентных ставок в разрезе интервалов репрайсинга. Благодаря этому происходит выявление процентных ставок, в наибольшей степени определяющих изменение доходности. На основе выбранного набора процентных ставок производится реконструкция аттрактора и расчет инвариант, затем осуществляется прогнозирование. Результаты прогноза интерпретируется в ключе принятия риска или его снижения. При снижении риска в зависимости от прогнозируемой динамики и текущей рисковой позиции предпринимаются действия: в случае прогнозирования повышательной динамики на рынке процентных

ставок при положительной рисковой позиции по ним или понижательной динамики при отрицательной рисковой позиции увеличиваются чувствительные к процентному риску активы, что осуществляется за счет следующих действий:

- приобретение ценных бумаг с плавающей ставкой; -конвертация ставок по кредитам с фиксированных в плавающие;

-замена фондирования по кредитам с плавающей процентной ставкой на фондирование с фиксированной процентной ставкой; В противном случае увеличиваются чувствительные к процентному риску пассивы.

Выводы

1. Критически оценен существующий набор инструментов теории детерминированного хаоса для исследования систем на основе временных рядов и на основе этого, а также сравнительного подхода, определены наиболее эффективные методы для реконструкции аттрактора, расчета корреляционной размерности и характеристических показателей Ляпунова.

2. Выявлена качественная связь между процентным риском и рынком процентных ставок, причем последний объект был определен как один из главных причинных факторов возникновения процентного риска в коммерческих банках.

3. Установлена нелинейность и детерминированность процентных ставок LIBOR на срок 3 месяца и EURIBOR на срок 1, 3 и б месяцев. Произведена реконструкция динамических систем на основе временных рядов, осуществлена оценка метрических и динамических инвариант, результаты чего еще раз подтвердили гипотезу о детерминированности исследуемых систем.

4. К рынку процентных ставок адаптирована математическая модель прогнозирования на основе одномерного временного ряда; разработаны критерии ее применимости на основе определения области детерминированности и прогнозируемости.

5. Для рынка процентных ставок разработана новая математическая модель прогнозирования на основе многомерного временного ряда процентных ставок с использованием расширенного пространства вложения и ядерного сглаживания соседних точек траекторий, эффективность которой превышает эффективность классических подходов к прогнозированию финансовых рынков.

6. Создана методика для управления процентным риском в коммерческих банках на основе разработанной модели прогнозирования рынка процентных ставок.

ПУБЛИКАЦИИ ПО ТЕМЕ ИССЛЕДОВАНИЯ

Публикации в изданиях, рекомендованных ВАК:

1. Первадчук В.П., Галкин Д.Е. Применение методов теории детерминированного хаоса для прогноза динамики ставки межбанковского кредитования LIBOR // Вестник Ижевск, гос. техн. ун-та. -№2 (46). - Ижевск, 2010. - с.45-49.

2. Галкин Д.Е. Прогнозирование многомерных финансовых временных рядов на основе методов теории детерминированного хаоса // Вестник Инжэкона. - 2011. - №3(46). - Сер. Экономика. - СПб., 2011.-359-363 с.

В других изданиях:

3. Галкин Д.Е., Первадчук В.П. Фрактальный анализ динамики курсов валют // Тезисы докладов научно-технической конференции студентов и молодых ученых Пермск. гос. техн. ун-та. — сер. Прикладная математика и механика, 2007. - с. 26-27.

4. Первадчук В.П., Галкин Д.Е. Обоснование применения методов теории детерминированного хаоса для прогноза экономических систем // Вестник Перм. гос. техн. ун-та. - сер. Математика и прикладная математика. - Пермь, 2008. - с. 15-24.

5. Первадчук В.П., Галкин Д.Е. Применение фракталов в исследовании финансовых временных рядов // Вестник Перм. гос. техн. ун-та. - №14. - сер. Математика и прикладная математика. -Пермь,2008.-с. 8-15.

6. Первадчук В.П., Галкин Д.Е. Моделирование экономических систем с использованием методов теории детерминированного хаоса // Кибернетика и высокие технологии XXI века: сборник докладов XII международной научно-технической конференции. - Том 1. - Воронеж, 2011. - с. 277-282.

7. Галкин Д.Е. Особенности восстановления фазового аттрактора для прогнозирования экономических систем // Информационно-вычислительные технологии и их приложения: сборник статей XV Международной научно-технической конференции. - Пенза: РИО ПГСХА, 2011. - с.27-31

8. Первадчук В.П., Галкин Д.Е. Роль ставки межбанковского кредитования LIBOR в мировой экономике // Вестник Перм. гос. техн. ун-та. - сер. Социально-экономические науки. - Пермь, 2011. - с. 101105.

Подписано в печать 20.02.2012. Формат 60x84/16 Усл. печ. л. 1,45. Тираж 100 экз. Заказ 5О. Типография ПГНИУ. 614990. Пермь, ул. Букирева, 15

Диссертация: текстпо экономике, кандидата экономических наук, Галкин, Дмитрий Евгеньевич, Пермь

61 12-8/3010

Пермский национальный исследовательский политехнический университет

На правах рукописи

Галкин Дмитрий Евгеньевич

Прогнозирование процентных ставок на основе теории детерминированного хаоса как метод управления процентным риском в коммерческих банках

Специальность 08.00.13 - Математические и инструментальные методы

экономики

Диссертация на соискание ученой степени кандидата экономических наук

Научный руководитель д.т.н., профессор В.П. Первадчук

Пермь, 2011

СОДЕРЖАНИЕ

ВВЕДЕНИЕ..................................................................................................................4

ГЛАВА 1. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ В ИССЛЕДОВАНИИ ФИНАНСОВЫХ ВРЕМЕННЫХ РЯДОВ............................12

1.1. Анализ и прогнозирование временных рядов. Развитие научной мысли 12

1.1.1. Линейные модели..................................................................................14

1.1.2. Нелинейные модели..............................................................................18

1.2. Развитие методов анализа финансовых временных рядов на основе

теории детерминированного хаоса......................................................................25

1.2.1. Локальные модели................................................................................25

1.2.2. Глобальные методы..............................................................................26

1.2.3. Смешанные методы..............................................................................28

1.2.4. Топологический подход.......................................................................30

1.3. Краткие выводы............................................................................................34

ГЛАВА 2. ВЫБОР И ОБОСНОВАНИЕ МЕТОДОВ ИССЛЕДОВАНИЯ НЕЛИНЕЙНЫХ ДИНАМИЧЕСКИХ СИСТЕМ НА ОСНОВЕ ВРЕМЕННЫХ РЯДОВ........................................................................................................................35

2.1. Концепция сложных систем и теория детерминированного хаоса..........35

2.2. Реконструкция аттрактора на основе временного ряда.............................40

2.3. Расчет корреляционной размерности динамической системы.................48

2.4. Характеристические показатели Ляпунова и энтропия как мера

предсказуемости....................................................................................................53

2.5. Краткие выводы............................................................................................57

ГЛАВА 3. ОЦЕНКА И ИССЛЕДОВАНИЕ ПРОЦЕНТНОГО РИСКА В БАНКОВСКОЙ ДЕЯТЕЛЬНОСТИ.........................................................................58

3.1. Изучение роли процентных ставок в экономике и рынка межбанковского кредитования для банков......................................................................................58

3.2. Исследования понятия процентного риска, определение наиболее значимых видов и главных факторов..................................................................65

3.2.1. Процентный риск и его место среди банковских рисков.................65

3.2.2. Классификация процентных рисков...................................................70

3.2.2. Рынок процентных ставок как главный фактор, обуславливающий возникновение процентного риска................................................................74

3.3. Исследование подходов к оценке процентного риска...............................76

3.4. Краткие выводы..............................................................................................89

ГЛАВА 4. РАЗРАБОТКА МЕТОДА УПРАВЛЕНИЯ ПРОЦЕНТНЫМ РИСКОМ НА ОСНОВЕ ПРОГНОЗИРОВАНИЯ ПРОЦЕНТНЫХ СТАВОК......................91

4.1. Постановка задачи.........................................................................................91

4.2. Исследование рынка процентных ставок на предмет стационарности, нелинейности и детерминированности...............................................................98

4.3. Оценка метрических и динамических инвариант.....................................107

4.4. Адаптация математической модели прогнозирования на основе одномерного временного ряда с учетом ограниченной детерминированности и предсказуемости...............................................................................................113

4.5. Разработка математической модели прогнозирования на основе многомерного временного ряда.........................................................................120

4.6. Сравнение результатов прогноза и разработка методики управления процентным риском на основе прогнозирования процентных ставок..........125

4.7. Краткие выводы............................................................................................135

ЗАКЛЮЧЕНИЕ.......................................................................................................136

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ...............................................138

ПРИЛОЖЕНИЯ.......................................................................................................148

ВВЕДЕНИЕ

Актуальность темы исследования. Задача управления рисками в банковском секторе является нетривиальной на всем протяжении ведения банковской деятельности. Проблема банковских рисков в современности приобретает все большую актуальность в свете увеличения влияния финансового сектора на мировую экономику. Так, к примеру, в США, в крупнейшей экономике мира, в 1970-х годах доля доходов финансового сектора в общем объеме доходов корпораций не превышала 16%, а в 2000-х достигла уже 41%. Принимая во внимание колоссальную роль банков в мировом финансовом кризисе 2008 года и набирающем обороты кризисе 2011 года, проблема управления и контроля за рисками в банковском секторе требует пристального внимания и изучения.

Среди всех видов риска, свойственных банковской деятельности, процентный риск занимает особое место, уступая лидирующие позиции по степени влияния лишь кредитному риску. Однако одним из существенных отличий процентного риска от кредитного является тот факт, что область, подверженная его влиянию, много шире. Вследствие этого, значимость процентного риска является высокой не для одного отдельного направления бизнеса, а для банка в целом.

Кроме этого, принимая во внимание высокую волатильность финансовых рынков, в том числе и рынка процентных ставок, в период экономической нестабильности, управление процентным риском должно осуществляться взвешенно, учитывая возможные варианты развития событий, влияющих на уровень процентного риска.

Принимая во внимание вышеуказанные обстоятельства, следует признать, что проблема управления процентным риском в банковском секторе является крайне актуальной.

Степень научной разработанности темы. Изучением понятия процентного риска и исследованием различных аспектов проблем оценки и управления данным видом риска занимались такие ученые как Macaulay F., Redhead К., Hughes S., Entrop O., Cade E., Helliar С., Fabozzi F., Gardener E., Mishkin F., van Greuning H., Patnaik I., Madura J., Amadou N.

Современный уровень разработки данной проблемы в нашей стране отражены в работах отечественных ученых и специалистов, среди которых следует выделить Севрук В.Т., Ларионову И.В., Виниченко И.Н., Лаврушина О.И., Соколинскую Н.Э., Валенцеву Н.И., Хандруева A.A.

Одним из динамично развивающихся направлений в исследовании экономических объектов и систем является использование математических методов. Среди них отдельно следует отметить подходы, позволяющие широко использовать в исследовании концепции синергетики, детерминированного хаоса, фрактальной геометрии. Разработкой и развитием таких методов занимались следующие ученые: Takens F., Sornette D., Peters E., Bachelier L., Mandelbrot В., Gilmore R., Kantz H., Grassberger P., Procaccia I., Fama E., Lorenz E., Ruelle D., Casdagli M., Cao L., Haken H., Lefranc M. В российской науке значительный вклад в развитие этого направления внесли Курдюмов С.П., Малинецкий Г.Г., Безручко Б.П., Лоскутов А.Ю., Шумского С.А., Куперина Ю.А.

Целью диссертационного исследования является разработка теоретических и методологических основ для управления процентным риском в коммерческих банках на базе прогнозирования процентных ставок с помощью теории детерминированного хаоса.

Для достижения поставленной цели решены следующие задачи:

1. Исследование существующих подходов для прогнозирования финансовых временных рядов и оценки процентного риска с целью использования имеющегося опыта в разработке нового метода.

2. Выбор эффективного инструментария для исследования нелинейных динамических систем на основе порожденных временных рядов.

3. Исследование связи рынка процентных ставок и процентного риска в коммерческих банках.

4. Адаптация одномерной математической модели прогнозирования к рынку процентных ставок с учетом ограниченной детерминированности и предсказуемости.

5. Разработка многомерной математической модели прогнозирования процентных ставок.

6. Создание методики управления процентным риском на основе разработанных моделей прогнозирования.

Объектом исследования выступают коммерческие банки, подверженные процентному риску в результате осуществления операций с процентными продуктами.

Предметом исследования является методы и инструменты для управления процентным риском в коммерческих банках, а также методы и алгоритмы, обеспечивающие моделирование связанных с процентным риском систем.

Область исследования соответствует паспорту специальности ВАК РФ 08.00.13 «Математические и инструментальные методы экономики» по следующим пунктам:

1.1. Разработка и развитие математического аппарата анализа экономических систем: математической экономики, эконометрики, прикладной статистики, теории игр, оптимизации, теории принятия решений, дискретной

математики и других методов, используемых в экономико-математическом моделировании.

1.6. Математический анализ и моделирование процессов в финансовом секторе экономики, развитие метода финансовой математики и актуарных расчетов.

2.3. Разработка систем поддержки принятия решений для рационализации организационных структур и оптимизации управления экономикой на всех уровнях.

Теоретической и методологической основой являются исследования в области оценки и управления процентным риском в банках отечественных и зарубежных ученых. Другими областями знаний, достижения в которых использовались в исследовании, являются теория детерминированного хаоса, нелинейная динамика, математические методы и модели финансовых рынков, фрактальная геометрия, синергетика.

Практические расчеты в рамках настоящего исследования производились с использованиям таких прикладных программных средств как MS Excel, Math Works Matlab, Fractan, Tisean.

Информационную базу исследования составили:

- данные информационно-аналитических материалов по исследуемой проблеме, представленные в научной литературе, периодической печати и сети Интернет;

- статистические источники в виде котировок ставок межбанковского кредитования LIBOR и EURIBOR на различные сроки.

Наиболее существенными результатами, полученными лично автором, имеющими научную новизну и выносимыми на защиту, являются:

1. Установленная с помощью статистических методов нелинейность и детерминированность рынка процентных ставок LIBOR и EURIBOR.

2. Модифицированная математическая модель для прогнозирования процентных ставок на основе одномерного временного ряда, учитывающая детерминированность исследуемых систем, а также разработанный подход для определения области применимости данной модели.

3. Математическая модель для прогнозирования процентных ставок на основе многомерного временного ряда, учитывающая детерминированность исследуемых систем и позволяющая использовать при построении прогноза динамику нескольких систем.

4. Методика управления процентным риском в коммерческих банках, в основе которой лежит математическая модель прогнозирования процентных ставок на базе методов теории детерминированного хаоса, позволяющая производить сценарное моделирование с помощью прогностических данных.

Теоретическая значимость результатов. Сформулированные в диссертационном исследовании положения и выводы развивают теоретико-методологическую базу анализа и прогнозирования рынка процентных ставок, а также методов для управления процентным риском.

Практическая значимость результатов. Разработанный методологический подход предоставляет коммерческим банкам корректный инструмент, позволяющий в задаче управления процентным риском перейти от гипотетического сценарного моделирования к сценарному моделированию, основанному на более реалистичных прогнозных данных.

Апробация результатов исследования. Основные положения диссертационной работы докладывались на научно-технической конференции студентов и молодых ученых ПГТУ (г. Пермь, 2007 г.), на XV Международной научно-технической конференции «Информационно-вычислительные технологии и их приложения (г. Пенза, 2011 г.), на XII Международной научно-технической конференции «Кибернетика и высокие технологии XXI века (г. Воронеж, 2011 г.).

Результаты исследования нашли практическое применение в ЗАО ЮниКредит Банк. В работе данной организации используется методология управления процентным риском, а также применяется описанная в исследовании модель прогнозирования процентных ставок.

Материалы, методы и результаты диссертации используются на кафедре Прикладной математики Пермского национального исследовательского политехнического университета при чтении курса «Математический анализ динамических моделей в экономике» по направлению подготовки 010500.68 «Прикладная математика и информатика» в рамках магистерской программы «Математические методы в управлении экономическими процессами» и при чтении курса «Математический анализ динамических процессов в экономике» по направлению подготовки 080100.68 - «Экономика» в рамках магистерской программы «Математические методы анализа экономики».

Внедрение результатов исследования в указанных организациях подтверждено соответствующими документами.

Публикации. По теме диссертации автором опубликовано восемь работ общим объемом 3,72 п. л., в том числе две работы в изданиях, рекомендованных ВАК для публикации результатов диссертации (1,16 п. л.).

Структура диссертационной работы. Структура диссертации обусловлена целью, задачами и логикой исследования. Работа состоит из введения, четырех глав, заключения, списка использованной литературы и приложения.

Во введении обосновывается актуальность темы, производится постановка цели и задач научного исследования, освещаются наиболее существенные достижения, и приводится новизна полученных результатов.

В первой главе «Применение математических методов в исследовании финансовых временных рядов» рассматриваются существующие методы и подходы к прогнозированию финансовых временных рядов, дается оценка их

эффективности, определяются предпосылки для использования нелинейных методов к моделированию финансовых временных рядов.

Во второй главе «Выбор и обоснование методов исследования нелинейных динамических систем на основе временных рядов» определяются основные подходы к изучению динамических систем с помощью теории детерминированного хаоса, производится критическая оценка и выявление наиболее оптимальных и корректных инструментов для исследования систем на основе временных рядов.

В третьей главе «Оценка и исследование процентного риска в банковской деятельности» изучается роль процентного риска для коммерческих банков. Исследуется классификация процентного риска и основных факторов, порождающих процентный риск, с целью выявления характера связи между рынком процентных ставок и процентным риском.

В четвертой главе «Разработка метода управления процентным риском на основе прогнозирования процентных ставок» производится исследование рынка процентных ставок на предмет нелинейности и детерминированности. Производится адаптация модели прогнозирования на основе одномерного временного ряда к рынку процентных ставок; осуществляется разработка модели прогнозирования на основе многомерного временного ряда. На базе полученных моделей создается методика управления процентным риском в коммерческом банке.

В заключении содержатся основные результаты и выводы диссертационного исследования, оценка практического значения работы.

В списке используемой литературы приведены основные источники, использованные при написании диссертации.

Приложение включает описание результатов расчетов, не включенных в основной текст работы.

Основные результаты исследования проиллюстрированы в таблицах и на графиках. Диссертация включает 77 рисунков, 26 таблиц, 93 формулы. Список использованной литературы составляет 108 наименований. Общий объем составляет 147 страниц.

ГЛАВА 1. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ В ИССЛЕДОВАНИИ ФИНАНСОВЫХ ВРЕМЕННЫХ РЯДОВ

1.1. Анализ и прогнозирование временных рядов.

Развитие научной мысли

В настоящей диссертации в качестве метода управления процентным риском коммерческого банка рассматривается прогнозирование финансовых временных рядов. В связи с этим, очевидна необходимость проследить развитие научной мысли в отношении прогнозирования финансовых временных рядов и временных рядов в целом, рассмотреть подходы и методы, применяемые для осуществления прогнозирования, оценить их преимущества и недостатки.

Вообще говоря, интерес к прогнозированию состояний изучаемых объектов появился одновременно с определением объекта изучения, что вполне объяснимо с точки зрения ученого: анализируя сущность объекта исследования, ученый всегда приходит к тому, что пытается предсказать его будущее состояние, смоделировать «поведение» объекта. С развитием математического аппарата менялись и способы фо�